
Introduction

Benoît Legat

Understand simple things deeply						
☐ Full Width Mode	☐ Present Mode					
≡ Table of Contents						
Deepseek event						
What do these libraries really do ?						
Grading						

Deepseek event

Distillation =

2.3.1. Cold Start

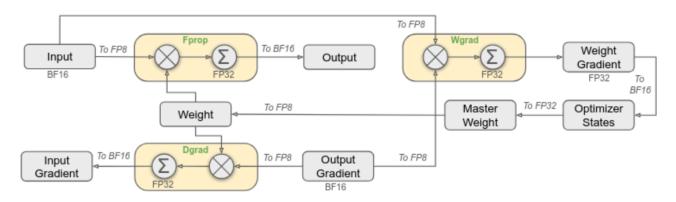
Unlike DeepSeek-R1-Zero, to prevent the early unstable cold start phase of RL training from the base model, for DeepSeek-R1 we construct and collect a small amount of long CoT data to fine-tune the model as the initial RL actor. To collect such data, we have explored several approaches: using few-shot prompting with a long CoT as an example, directly prompting models to generate detailed answers with reflection and verification, gathering DeepSeek-R1-Zero outputs in a readable format, and refining the results through post-processing by human annotators.

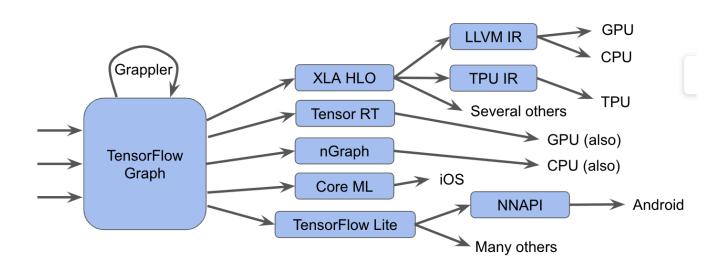
In this work, we collect thousands of cold-start data to fine-tune the DeepSeek-V3-Base as the starting point for RL. Compared to DeepSeek-R1-Zero, the advantages of cold start data

	AIME 2024		MATH-500	GPQA Diamond	LiveCodeBench
Model	pass@1	cons@64	pass@1	pass@1	pass@1
QwQ-32B-Preview	50.0	60.0	90.6	54.5	41.9
DeepSeek-R1-Zero-Qwen-32B	47.0	60.0	91.6	55.0	40.2
DeepSeek-R1-Distill-Qwen-32B	72.6	83.3	94.3	62.1	57.2

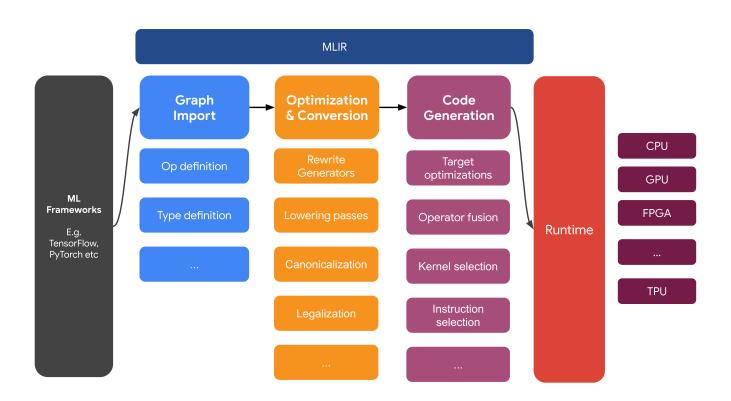
Table 6 | Comparison of distilled and RL Models on Reasoning-Related Benchmarks.

Low-level improvements \hookrightarrow

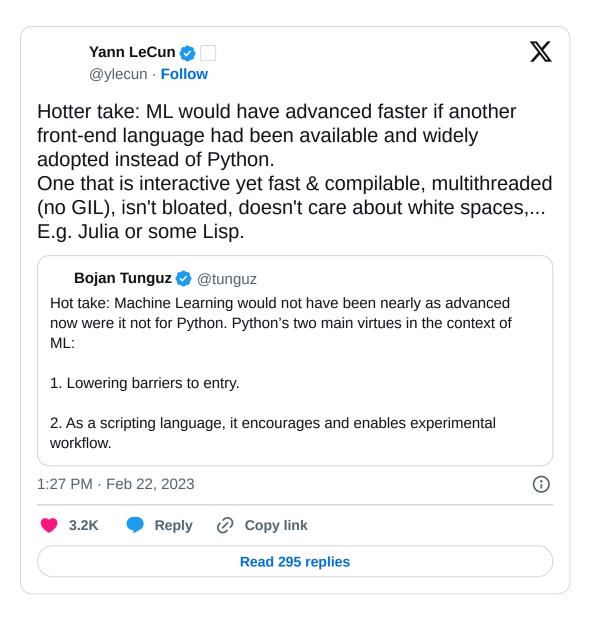



Figure 6 | The overall mixed precision framework with FP8 data format. For clarification, only the Linear operator is illustrated.

▶ Is it worth developing such low-level improvements?


What do these libraries really do ? =>

Accelerated automatic differentation \Rightarrow



MLIR =

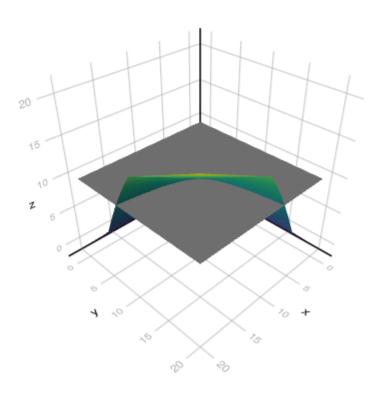
DIY =

The goal of the course it to take a tour of **automatic differentiation**. For this we will write our own from scratch, in **Julia**.

Grading =

- If exam or homework is below 5, grade is the minimum of both
- If exam and homework are above 10, grade is the average of both
- Otherwise, we interpolate between these cases as follows

1 $g(a, b) = \underline{f}(a) * b + (1 - \underline{f}(a)) * a$


• Gain bonus points by contributing to the Git or winning benchmarks with the projects

```
f (generic function with 1 method)

1 f(x) = min(max(0, (x - 5)/10), 0.5)

g (generic function with 1 method)
```

```
grade (generic function with 1 method)
1 grade(HW, EX) = min(g(HW, EX), g(EX, HW))
```


The End

```
1 using Colors, WGLMakie
```

using Plots, PlutoUI, PlutoUI.ExperimentalLayout, HypertextLiteral; @htl, @htl_str
PlutoTeachingTools, ShortCodes

```
img (generic function with 3 methods)
```

qa (generic function with 2 methods)