Implicit Differentiation

Benoît Legat

☐ Full Width Mode ☐ Present Mode

≡ Table of Contents

Differentiating numerical procedures

Implicit function theorem

Implicit VJP and JVP

Sensitivity of a linear program

Differentiating numerical procedures

Consider a program that numerically converge to solutions:

```
function f(x)
    while abs(error) > tol
        y += # Make some step in the right direction
        error = # update error
    end
    return y
end
```

▶ How can we differentiate with respect to x? Forward, reverse, something else?

Square root example

To illustrate consider this Jax example rewriting $x^2=a$ into $2x^2=x^2+a$ or x=(x+a/x)/2

```
my_sqrt (generic function with 1 method)
1 my_sqrt(a) = fixed_point(x -> (x + a / x) / 2, a)
```

```
1.4142135623746899

1 my_sqrt(2)
```

AD through fixed point ⇔

```
0.3535533906116973

1 FiniteDifferences.central_fdm(5, 1)(my_sqrt, 2.0)
```

```
0.35355339061171626
```

```
1 ForwardDiff.derivative(my_sqrt, 2.0)
```

0.35355339061171626

```
1 DI.derivative(my_sqrt, DI.AutoMooncake(), 2.0)
```

► Can't we do something simpler using the solution of the fixed point and the fixed point equation ?

Implicit function theorem

In a sense, the implicit function theorem can be thought as the mother theorem, as it can be used to prove envelope theorems, the adjoint state method and the inverse function theorem. Section 11.6 of The Elements of Differentiable Programming book

Inverse function theorem □

Assume

- $f: \mathcal{W} o \mathcal{W}$ is C^2
- $\partial f(w_0)$ is invertible

Then

- f is bijective from a neighborhood of w_0 to a neighborhood of $f(w_0)$
- ullet For ω in a neighborhood of $f(w_0)$, f^{-1} is C^2 and $\partial f^{-1}(\omega)=(\partial f(f^{-1}(w)))^{-1}$

▶ Proof sketch

Implicit function theorem (univariate case)

Assume

- $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
- ullet (w_0,λ_0) such that $F(w_0,\lambda_0)=0$ and $\partial_1 F(w_0,\lambda_0)
 eq 0$
- $F(w,\lambda)$ is C^2 in a neighborhood ${\mathcal U}$ of (w_0,λ_0)

Then there exists a neighborhood $\mathcal{V} \subseteq \mathcal{U}$ there exists $w^*(\lambda)$ such that

$$egin{aligned} w^\star(\lambda_0) &= w_0 \ F(w^\star(\lambda),\lambda) &= 0, & orall (w^\star(\lambda),\lambda) \in \mathcal{V} \ \partial w^\star(\lambda) &= -rac{\partial_2 F(w^\star(\lambda),\lambda)}{\partial_1 F(w^\star(\lambda),\lambda)} \end{aligned}$$

Example \hookrightarrow

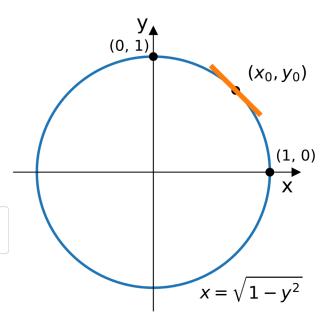
Implicit relation between \boldsymbol{x} and \boldsymbol{y} :

$$x^2 + y^2 = 1$$

Two possible explicit functions:

$$y^+(x) = \sqrt{1-x^2} \ y^-(x) = -\sqrt{1-x^2}$$

► Does that contradict the Inverse Function Theorem (IFT) ?



Implicit function theorem (multivariate case) ⇔

Assume

- $F: \mathcal{W} imes \Lambda o \mathcal{W}$
- ullet (w_0,λ_0) such that $F(w_0,\lambda_0)=0$ and $\partial_1 F(w_0,\lambda_0)$ is invertible
- $F(w,\lambda)$ is C^2 in a neighborhood \mathcal{U} of (w_0,λ_0)

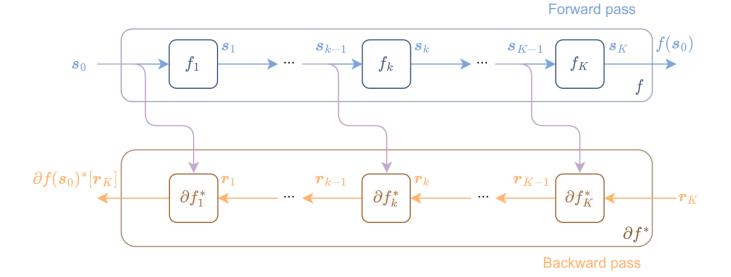
Then there exists a neighborhood $\mathcal{V} \subseteq \mathcal{U}$ there exists $w^*(\lambda)$ such that

$$egin{aligned} w^\star(\lambda_0) &= w_0 \ F(w^\star(\lambda),\lambda) &= 0, & orall (w^\star(\lambda),\lambda) \in \mathcal{V} \ \partial w^\star(\lambda) &= -\partial_1 F(w^\star(\lambda),\lambda)^{-1} \partial_2 F(w^\star(\lambda),\lambda) \end{aligned}$$

▶ Proof

Implicit VJP and JVP

How can we integrate implicit function in a chain of functions? Say, $s_{k-1}=\lambda$ and $f_k(\lambda)=w^*(\lambda)$ such that $F(w^*(\lambda),\lambda)=0$.



Pushforward operator (JVP) ⇔

Let $A=-\partial_1 F(w^\star(\lambda),\lambda)$ and $B=\partial_2 F(w^\star(\lambda),\lambda)$. Assuming the condition of the IFT holds, we have

$$A\partial w^\star(\lambda)/\partial s_0=B\partial \lambda/\partial s_0$$

Given a forward tangent $t_{k-1}=\partial \lambda/\partial s_0$, the forward tangent $t_k=\partial w^\star(\lambda)/\partial s_0$ can be obtained by solving the linear system:

$$At_k = Bt_{k-1}$$
$$t_k = A^{-1}Bt_{k-1}$$

Interlude: Repeated linear system solve 🖘

We need to solve the system $At_k = Bt_{k-1}$ once by forward tangent, so once by entry of s_0 in case of forward-mode AD. We may also pre-compute $A^{-1}B$ by solving one linear system by column of B. In both case, we need to solve several linear system with the **same** A matrix.

```
A = 2×2 Matrix{Int64}:
    1    2
    3    4

1    A = [1 2; 3 4]
```

```
b = ▶[5, 6]

1 b = [5, 6]
```

Classical Gaussian elimination finds the solution for one vector only, even though the same row operations would be applied for different vectors.

```
2×3 Matrix{Float64}:
1.0 0.0 -4.0
0.0 1.0 4.5

1 rref([A b])
```

Solution: precompute the LU decomposition \bigcirc

LU decomposition remember the row operations to make $m{U}$ triangular in the $m{L}$ matrix.

```
F = LU{Float64, Matrix{Float64}, Vector{Int64}}
L factor:
   2×2 Matrix{Float64}:
   1.0    0.0
   0.333333   1.0
U factor:
   2×2 Matrix{Float64}:
   3.0   4.0
   0.0   0.666667
```

As $m{L}$ and $m{U}$ are triangular, solving the linear systems $m{L}m{U}m{x}=m{b}$ can now be done by solving two simple linear systems (and permutation in case of pivoting)

```
1. Lc = b
2. Ux = c
```

▶ Can we also solve the linear system with only access to the matrix-vector product of the linear map $\partial_1 F(w^*(\lambda), \lambda)$? (aka matrix-free inversion)

Interlude: Adjoint of inverse

Consider a linear map $A: \mathcal{X} \to \mathcal{Y}$ between linear spaces of the same dimension. Assume A is invertible, what is the adjoint of A^{-1} ?

- ▶ Is the adjoint A^* always invertible ?
- ▶ Is the adjoint of the inverse equal to the inverse of the adjoint ?

Pullback operator (VJP) ⇔

The pullback operation is the adjoint of the pushforward operator:

$$\langle r,A^{-1}Bt
angle = \langle (A^{-1})^*r,Bt
angle = \langle (A^*)^{-1}r,Bt
angle = \langle B^*(A^*)^{-1}r,t
angle$$

So the pullback operator maps r to $B^*(A^*)^{-1}r$.

This means that it first solves the linear system $A^*v=r$ (possibly in a matrix-free way) and then returns Bv.

Sensitivity of a linear program 👄

Consider the primal-dual pair of programs

$$egin{array}{ll} \min \ c^ op x & \max \ b^ op y \ Ax = b & A^ op y \leq c \ x > 0 & \end{array}$$

The Lagrangian function is

$$\mathcal{L}(x,y) = c^{ op}x - y^{ op}(Ax - b) = y^{ op}b - (A^{ op}y - c)^{ op}x$$

The KKT condition give

$$rac{\partial \mathcal{L}}{\partial y} = Ax - b = 0 \qquad \Leftrightarrow \qquad Ax = b \ (A^{ op}y - c) \perp x \geq 0 \qquad \Leftrightarrow \qquad \mathrm{Diag}(x)(A^{ op}y - c) = 0$$

IFT for linear programs ⇔

The system of equation to consider for the IFT is therefore

$$F((x,y),(A,b,c)) = (Ax-b,\mathrm{Diag}(x)(A^ op y-c))$$

We have

$$\partial_1 F = egin{bmatrix} A & 0 \ \mathrm{Diag}(A^ op y - c) & \mathrm{Diag}(x)A^ op \end{bmatrix}$$

See <u>OptNet</u>: <u>Differentiable optimization as a layer in neural networks</u> for a generalization to quadratic objective.

Acknowledgements and further readings ⇔

- Example from : Implicit function differentiation of iterative implementations
- Chapter 11 of The Elements of Differentiable Programming book
- See <u>DiffOpt.jl</u> for implicit differentiation of **JUMP** optimization problems.

Utils 🖘

14 end

```
1 using PlutoUI, PlutoUI.ExperimentalLayout, HypertextLiteral; @hutoT@achingTools
 1 import ForwardDiff, FiniteDifferences, Mooncake
 1 import DifferentiationInterface as DI
 1 using LinearAlgebra, RowEchelon
img (generic function with 3 methods)
qa (generic function with 2 methods)
 1 begin
 2 function qa(question, answer)
       return @htl("<details><summary>$question</summary>$answer</details>")
 4 end
 5 function _inline_html(m::Markdown.Paragraph)
       return sprint(Markdown.htmlinline, m.content)
 7 end
 8 function qa(question::Markdown.MD, answer)
       # 'html(question)' will create '' if 'question.content[]' is
   'Markdown. Paragraph'
       # This will print the question on a new line and we don't want that:
       h = HTML(_inline_html(question.content[]))
       return qa(h, answer)
13 end
```