Automatic Differentiation

Benoit Legat

U Full Width Mode (J Present Mode
:= Table of Contents

Differentiation approaches
Chainrule

Forward Differentiation
Reverse differentiation
Comparison

Discontinuity

Differentiation approaches

We can compute partial derivatives in different ways:

1. Symbolically, by fixing one of the variables and differentiating with respect to the others,
either manually or using a computer.

2. Numerically, using the formula f'(z) =~ (f(z + h) — f(z))/h.

3. Algorithmically, either forward or reverse : this is what we will explore here.

Chain rule

Consider f(x) = f3(f2(f1(z)))- If we don't have the expression of f; but we can only evaluate
fi(z) or f'(z) for a given ? The chain rule gives

f'(2) = f3(f2(f1(2))) - f2(f1(=)) - fi(=).
Let's define 89 = & and 8% = fx(8k_1), we now have:
f'(x) = f3(s2) - f2(s1) - f1(30)-
Two choices here:

Forward Reverse
tg =1 rs = 1
te = fa(sk-1) " te1 Tk =Ths1 - Frr1(Sk)

Forward Differentiation

t tp—1 [Itk tr_1 tx |9f(s0)[to]
tO afl ; } afk > ... N 8fK

—J '

Figure 8.1

Implementation

struct Dual{T}
value::T # s_k
derivative::T # t_k
end

Base.:-(x::Dual{T}) where {T} = Dual(-x.value, -x.derivative)

Base.:x(x::Dual{T}, y::Dual{T}) where {T} = Dual(x.value % y.value, x.value x
y.derivative + x.derivative % y.value)

»Dual(-3, -10)
-Dual(1, 2) x Dual(3, 4)

f_1 (generic function with 1 method)
foi(x, y) = x %y

f_2 (generic function with 1 method)
f_2(s1) = -s1

»Dual(-3, -10)
(f_2 o f_1)(Dual(1, 2), Dual(3, 4))

Reverse differentiation

f

T

LIS oo)
o1}

Two different takes on the multivariate chain
rule

The chain rule gives us

3f3 0fs 0s1 Ofs 059

T (11(0), a(a)) = oo, 80) - G+ (o1, 30) - 2

To compute this expression, we need the values of g(x) and h(z) as well as the derivatives dg/dz

and Oh /0.

Forward Reverse
tg = 233 £+ 233 ts . Cgven 81, 89, computes 6 2 (s1,82) and
S1 S92 633 (81, 82)

o Givenrg = 0sg/0s3
o Addr3 - (0s3/0s1)tory
o Addrgz - (0s3/0s2) tory

e Given 81, 82, computes g (s1,82) and

0s3
Bsq (81732)
o Givent; and ta, computes 0f3/0x

> Apply this to f3(s1,82) = s1 + 82, fi(z) = x and fo(z) = =2

Forward tangents

Forward pass Forward mode

Reverse tangents

Forward pass Reverse mode

Ry

oy

|

» Why is ddup* a sum ?

Expression graph

80
(2q,29)

/ﬁ(sﬂ) =1

f5(51,84) = 51+ 54

(4

fa(s1) = e’

\

fr(s4,86) = 8456

folss) = /35

> fa

fa(s2,83) = 5283

/

» Can this directed graph have cycles ?

» What happens if f; is handled before f5 in the backward pass ?

» How to prevent this from happening ?

f(s0)
=x9e®l\/x] + x9e”!
>

Comparison

o Forward mode of f(z) with dual numbers Dual. (x, v) computes Jacobian-Vector Product

OVP) J¢(z) - v
« Reverse mode of f(z) computes Vector-Jacobian Product (VJP) v " J#(z) or in other words

Jyo(z) Tv

» How can we compute the full Jacobian ?

» When is each mode faster than the other one to compute the full Jacobian ?
Memory usage of forward mode

Memory
usage A

>

Algorithm steps

Memory usage of reverse mode

Memory
usage A

>
Algorithm steps

Discontinuity

The function |:n| is not differentiable at & = 0. If we approach from the left (thatis, z < 0, the
function is —z), then the derivative is —1. If we approach from the right (thatis, > 0, the
function is), then the derivative is 1. There is no valid gradient!

However, any number between —1 and 1 is a valid subgradient! Whereas the gradient is the
normal to the unique tangent, the subgradient is an element of the tangent cone. Which one
should we return ?

0.9 r
0.6 -

03 r

-0.3

-1.0 -0.5 0.0 0.5 1.0

Forward mode

abs (generic function with 1 method)

abs(x) = ifelse(x < 0, -x, Xx)

abs_bis (generic function with 1 method)
abs_bis(x) = ifelse(x > 0, x, -x)

isless(x.value, y)

Base.isless(x::Dual, y::Real)

Base.isless(x::Real, y::Dual) = isless(x, y.value)

> 0,1
abs(Dual(0, 1))

4 0, -1
abs_bis(Dual(0, 1))

Acknowledgements and further readings

Dual is inspired from ForwardDiff

Node is inspired from micrograd

Here is a good intro to AD
Figures are from the The Elements of Differentiable Programming book

The End

https://github.com/JuliaDiff/ForwardDiff.jl
https://github.com/karpathy/micrograd
https://gdalle.github.io/AutodiffTutorial/
https://diffprog.github.io/

Utils

import MLJBase, Colors, Tables
using Graphs, GraphPlot, Printf

using Plots, PlutoUI, PlutoUI.ExperimentalLayout, HypertextLiteral,
PlutoTeachingTools

img (generic function with 3 methods)

ga (generic function with 2 methods)

