
Automatic Differentiation
Benoît Legat

 Full Width Mode Present Mode

Differentiation approaches

Chain rule

Forward Differentiation

Reverse differentiation

Comparison

Discontinuity

Table of Contents

Differentiation approaches
We can compute partial derivatives in different ways:

1. Symbolically, by fixing one of the variables and differentiating with respect to the others,

either manually or using a computer.

2. Numerically, using the formula .

3. Algorithmically, either forward or reverse : this is what we will explore here.

Chain rule

Consider . If we don't have the expression of but we can only evaluate

 or for a given ? The chain rule gives

Let's define and , we now have:

Two choices here:

Forward Differentiation

Figure 8.1

Implementation

Dual(-3, -10)

f_1 (generic function with 1 method)

f_2 (generic function with 1 method)

struct Dual{T}
value:: # s_k

derivative:: # t_k

end

1

2

3

4

Base.:-(x::) where = Dual(-x.value, -x.derivative)1

Base.:*(x:: , y::) where = Dual(x.value * y.value, x.value *

y.derivative + x.derivative * y.value)

1

-Dual(1, 2) * Dual(3, 4)1

f_1(x, y) = x * y1

f_2(s1) = -s11

Dual(-3, -10)

(f_2 ∘ f_1)(Dual(1, 2), Dual(3, 4))1

Reverse differentiation

Two different takes on the multivariate chain

rule

The chain rule gives us

To compute this expression, we need the values of and as well as the derivatives

and .

Forward

Given , computes and

Given and , computes

Reverse

Given , computes and

Given

Add to

Add to

Apply this to , and

Forward tangents

Reverse tangents

Why is a sum ?

Expression graph

Can this directed graph have cycles ?

What happens if is handled before in the backward pass ?

How to prevent this from happening ?

Comparison

Forward mode of with dual numbers Dual.(x, v) computes Jacobian-Vector Product

(JVP)

Reverse mode of computes Vector-Jacobian Product (VJP) or in other words

How can we compute the full Jacobian ?

When is each mode faster than the other one to compute the full Jacobian ?

Memory usage of forward mode

Memory usage of reverse mode

Discontinuity
The function is not differentiable at . If we approach from the left (that is, , the

function is), then the derivative is . If we approach from the right (that is, , the

function is), then the derivative is . There is no valid gradient!

However, any number between and is a valid subgradient! Whereas the gradient is the

normal to the unique tangent, the subgradient is an element of the tangent cone. Which one

should we return ?

Forward mode

abs (generic function with 1 method)

abs_bis (generic function with 1 method)

abs(x) = ifelse(x < 0, -x, x)1

abs_bis(x) = ifelse(x > 0, x, -x)1

Dual(0, 1)

Dual(0, -1)

Acknowledgements and further readings

Dual is inspired from ForwardDiff

Node is inspired from micrograd

Here is a good intro to AD

Figures are from the The Elements of Differentiable Programming book

The End

Base.isless(x:: , y::) = isless(x.value, y)1

Base.isless(x:: , y::) = isless(x, y.value)1

abs(Dual(0, 1))1

abs_bis(Dual(0, 1))1

https://github.com/JuliaDiff/ForwardDiff.jl
https://github.com/karpathy/micrograd
https://gdalle.github.io/AutodiffTutorial/
https://diffprog.github.io/

Utils

img (generic function with 3 methods)

qa (generic function with 2 methods)

import MLJBase, Colors, Tables1

using Graphs, GraphPlot, Printf1

using Plots, PlutoUI, PlutoUI.ExperimentalLayout, HypertextLiteral,

PlutoTeachingTools

: @htl, @htl_str1

